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Zusammenfassung
Die steigende Nachfrage nach Palmöl und Bioenergie fördert die Ausweitung von mit Ölpalmen (Elaeis  guineensis) 
bestandenen tropischen Nutzflächen und intensiviert zugleich Nutzungskonflikte mit der Nahrungsmittelproduk-
tion sowie Umweltdegradation. Des Weiteren erhöht die Abholzung von Regenwald zur Errichtung von Ölpalmen-
plantagen in der Regel den Ausstoß von Treibhausgasen. Umfassende Wirkungsanalysen zur Ausbreitung von Ölpal-
menplantagen benötigen Zeitreihen von Landnutzungskarten. Der Runde Tisch für nachhaltiges Palmöl (RSPO) hat 
bisher keine Leitlinien für die Evaluierung von Landnutzungsänderungen erstellt. Obwohl Fernerkundungsmetho-
den für die Beobachtung und Modellierung von Landnutzungsänderungen allgemein gut geeignet sind, wird die Nut-
zung von Landsat- Aufnahmen aus tropischen Regionen durch Bewölkung beeinträchtigt. Diese Studie präsentiert 
einen neuen Ansatz, welcher die Google Earth Engine (GEE) und das „System for Automated Geoscientific Analysis“ 
(SAGA) GIS nutzt. Zeitlich und räumlich aufgelöste Landnutzungs- und Landbedeckungsänderungen durch den An-
bau von Ölpalmen werden mit einem „median pixel composite mosaic“ von Landsat-5-, 7- und 8-Szenen für die Zeit-
räume 1999-2005 und 2009-2015 erfasst. Für die erste Periode erreicht das Verfahren eine Gesamtgenauigkeit von 
70,33 % und einen Kappa-Koeffizienten von 0,62. In der zweiten Periode  steigen diese Werte auf 84,5 % und 0,80.
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Abstract
The increasing demand for palm oil and bioenergy has promoted the expansion of tropical farmland covered with 
oil palms (Elaeis guineensis), resulting in increased competition with food production as well as environmental 
degradation. Moreover, oil palm cultivation may have increased greenhouse gas (GHG) emissions through defor-
estation. The overall impact estimation of oil palm related land-use change requires spatiotemporal land-use 
maps. So far, the Roundtable on Sustainable Palm Oil (RSPO) has not established guidelines on how to measure 
and evaluate oil palm related land-cover change. While remote sensing methods are suitable in general, the use 
of Landsat images in the tropics for the monitoring and modeling of land-cover changes has been restricted due 
to the influence of cloud cover. This study presents a novel approach for mapping tropical land-cover change 
 using the Google Earth Engine (GEE) cloud-based platform and the System for Automated Geoscientific Analysis 
(SAGA) GIS. Spatiotemporal land-use and land-cover changes in relation to oil palm cultivation are assessed 
using a median pixel composite mosaic of Landsat 5, 7 and 8 image scenes for the time periods 1999-2005 and 
2009-2015. The proposed approach yields an overall accuracy and kappa coefficient of 70.33 % and 0.62 for the 
first image composite period, and 84.5 % and 0.80 for the second image composite period respectively.
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1.  Introduction 

Traditionally, oil palm production has been a part of 
mixed farming activities in West Africa. However, in 
the current practice, most production has expanded 
as an industrial-scale mono-crop (Corley and Tinker 
2016). This imposes greater environmental risk on lo-
cal societies, particularly on those with limited eco-
nomic capacities (Colchester 2011). Currently, oil palm 
cultivation is characterized by large monocultures 
of uniform age structure, low canopy, sparse under-
growth, a low stability microclimate and intensive 
use of fertilizers and pesticides. Land-cover patterns 
reflect the underlying natural and social processes 
which, thus, helps to provide essential information 
for modeling and understanding many phenomena on 
Earth ( Liang 2008). Furthermore, understanding the 
complex interaction between human activities and 
global change requires the analysis of land cover data 
(Gong et al. 2013). The conversion of natural forest to 
agricultural uses such as oil palm etc., has been re-
flected in regional land-use maps in most of the tropical 
regions.  This conversion can result in a series of nega-
tive impacts (Carlson et al. 2012), e.g., forest estate loss, 
social cost (private cost plus externalities as a result of 
forest to oil palm estate conversion), loss of biodiversi-
ty and ecosystem services, alternative revenue loss and 
greenhouse gas emissions etc. (Sayer et al. 2012; Sheil 
et al. 2009).  To date, comprehensive regional land-use 
maps of the Nigerian Niger Delta which incorporate 
oil palm cultivation have not been produced. The lack 
of detailed land-use maps may be due to the limited 
availability of cloud-free satellite images and the unat-
tractiveness of such studies for most private actors and 
non-governmental sectors. Consequently, scientists 
have not been able to carry out such research, possibly 
a result of the cost of acquiring high-resolution satellite 
images like IKONOS etc. in the region.

Satellite remote sensing technology provides promis-
ing approaches for monitoring land-cover change. In 
many studies in southeastern Asia, continuous obser-
vations of the land surface have been used to map oil 
palm cultivation (Kamaruzaman and Setiawan 2003; 
Santoso et al. 2011; Tan et al. 2012). The classifications 
of satellite imagery for land-cover mapping, however, 
often require extensive skills of an experienced envi-
ronmental analyst (Aitkenhead and Aalders 2011). If 

such skills have not been available, land cover classi-
fication maps have been developed from ground sur-
veys and base maps such as digital topographic maps. 
In addition, land-use maps and soil suitability agricul-
tural maps (although not available for public use in the 
study area) have increased the accuracy of land-cover 
classification maps (Razali et al. 2014; Reichenbach and 
Geng 2003). Replacing or updating these maps with a 
large amount of remotely sensed data remains a very 
challenging task in land-use and land-cover mapping 
(Franklin and Wulder 2002). Different methods have 
been implemented; these can be divided into two cate-
gories: phenology and image-based approaches. The 
latter make use of spectral signatures to delineate 
different types of land cover, e.g. oil palm trees (e.g. 
Shafri et al. 2011; Thenkabail et al. 2004). The former 
relies on the temporal signal of optical sensors to iden-
tify various land covers using coarse resolution data 
from the Moderate-resolution Imaging Spectroradio-
meter (MODIS), e.g. Gutierrez-Velez et al. 2011. This is 
not ideal for monitoring oil palm distribution because 
the saturation of optimal images due to canopy closure 
causes a reduction in the possibility of detecting struc-
tural features (Shafri et al. 2011). Cloud cover issues 
are most common in tropical regions and have been a 
great challenge in land-cover monitoring. Due to the 
reduced monitoring options of cloudy images, Synthet-
ic Aperture Radar (SAR) data were frequently used as 
a major alternative in tropical studies (Koo et al. 2012; 
Li et al. 2015, Morel et al. 2011). The reason for this has 
been attributed to SAR’s all-weather and all-time capa-
bility. On the other hand, due to their coarse resolution 
of 50 m, SAR data are difficult to be used in a detailed 
monitoring of tropical land cover.

The GEE, which is an online environmental geoprocess-
ing platform that incorporates data from the National 
Aeronautics and Space Administration (NASA) and the 
Landsat Program, has created an avenue which allows 
users to assess records of Landsat imagery and process 
them over its online platform. This process reduces us-
ers’ computational processing times when analysing 
Landsat imagery, making global- and regional-scale 
Landsat projects achievable (e.g., Hansen et al. 2013).

The objective of this study is to provide a novel ap-
proach in monitoring and analyzing oil palm re-
lated land-cover issues in the tropics using Landsat 
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data with a resolution of 30 m via GEE and SAGA GIS 
(Conrad et al. 2015). We implement the Voting Sup-
port Vector Machine (SVM) classifier in GEE to map 
oil palm plantation in the Nigerian Niger Delta. To 
investigate the biases of our classifier, the analysis 
of its error matrix which includes overall accuracy, 
user accuracy and producer accuracy and the com-
putation of its kappa coefficient were performed.

2.  Study area

The study area covers the southern part of Nige-
ria where the oil palm production is concentrated 
(see Fig. 1). Currently called the Niger Delta region, 
it is one of the world’s largest acute fan-shaped 
river deltas. The settlements that are covered in 
this study include: Imo State, Abia State, Bayelsa 
State, Rivers State, Ondo state, Akwa Ibom state, 
Edo State and Cross River State. The Niger Delta 
is defined officially by the Nigerian government 
to extend over about 70,000 km2 which is 7.5 % of 
Nigeria’s total land mass. The region lies between 

4.01°N and 7.90°N and between 4.50°E and 10.56°E 
in the West African section of the tropical rainfor-
est belt and has a humid tropical climate. The area 
homes the country’s wetlands which is also one the 
largest wetland in the world with a very high bio-
diversity rate. The riverine area of the Niger Delta 
is a coastal belt of swamps bordering the Atlantic 
Ocean. The swamps are vegetated tidal f lats formed 
by a reticulate pattern of interconnected meander-
ing creeks and tributaries of the River Niger. The 
Niger Delta has one of the highest population den-
sities in the world with approximately 265 inhab-
itants per square kilometer. The population in the 
delta produces crops that are in high demand in the 
world market, such as palm oil and cocoa.  

3. Materials and methods

3.1  Satellite data

Landsat 5, 7 and 8 orthorectified and coregistered 
scenes were used in this study, capturing identical 

 

 
Fig. 1    Map of the study area
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periods of calendar days (270-365) for 1999 through 
2005 and 2009 through 2015. We did not consider 
using surface reflectance data following Song et al. 
(2001), who stated that an atmospheric correction 
was unnecessary for a change detection based on a 
classification of multitemporal composites in which 
multiple dates of remotely sensed images are recti-
fied and placed in single dataset as long as the train-
ing dataset is derived from the image being classified.

We decided to work with the images of calendar 
days 270-365 in each year in order to avoid season-
ality issues of oil palm reflectance values that may 
arise from seasonal variation of chlorophyll con-
centration, foliar pigments and other reflectance 
properties. We consider the image collection com-
posite range used in this study as ideal for oil palm 
mapping studies. We worked with Landsat mosaic 
images only because they are consistent with a 
resolution of 30 m and the combination of different 
Landsat sensors has only minor effects on the out-
put of the images. Landsat has a high degree of simi-
larities among its different sensors (Li et al. 2014), 
a notable advantage compared to working with the 
fusion of Landsat and MODIS images with a coarser 
resolution of 50 m as in Bisquert et al. (2015).

3.2  Data pre-processing 

Landsat 5, 7 and 8 data of the time periods from 1999 
to 2005 and from 2009 to 2015 were combined in 
one mosaic by taking the median pixel from the en-
tire Landsat image collection. The overall procedure 
is graphically represented in Fig. 2 and involves nine 
steps. The first six steps were done in GEE and the re-
maining three in SAGA GIS.

Spectral band normalization: Due to differences 
in the spectral band numbering system among the 
different Landsat missions – Landsat Thematic Map-
per (TM), Enhanced Thematic Mapper Plus (ETM+) 
and Operational Land Imager & Thermal Infrared 
Sensor (TIRS) (Li et al. 2014) – a normalization pro-
cess is required. Therefore, we carried out a nor-
malization to make the images from the different 
sensors suitable for combination by matching the 
bands from the different Landsat sensors (e.g. red 
band from Landsat 5 to Landsat 7 red band).

Cloud score analysis: Cloud cover problems were 
tackled by using the simple cloud score algorithm 

implemented in the GEE. This algorithm computes a 
simple cloud likelihood score threshold that ranges 
from 0 to 100, making use of brightness, temperature 
and Normalized Difference Snow Index (NDSI). The 
algorithm is mainly intended to compare multiple 
looks at the same point for relative cloud likelihood. 
For this study, a cloud score threshold of 20 was used. 
The threshold is subjective; the choice, however, was 
based the visual interpretation of the Landsat images.

Training data: While focusing on oil palm plantation 
mapping, other land-cover types considered in this 
study include water (rivers, lakes, swamps), built-up 
areas (including bare lands), cropland (croplands that 

Fig. 2 Graphical representation of the processing approach
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are not covered by oil palm trees) and forest. We in-
corporated the ground truth data, Google Earth data 
and Landsat image data in our training sample. The 
ground truth data were collected during a field work 
between November and December 2014.

Reference data: Due to the costs of acquiring refer-
ence data for using our sampling approach at a region-
al scale, we collected our reference data by combining 
Landsat image and Google Earth imagery.  In a similar 
case, Pulighe et al. (2015) assess the horizontal accu-
racy of Google Earth images and conclude that they 
have an overall positional accuracy close to 1 m.  This 
suggests that this is sufficient for deriving a reference 
data set for land-cover mapping. The sampling method 
used is the stratified random sampling method (Husch 
et al. 2003). The points were stratified according to 
the distribution of land-use/cover classes, in order to 
lessen the possibility of biases from misclassification. 
The choice of this sampling method was based on the 
recommendations of Olofsson et al. (2014) regarding 
good practices for estimating area and assessing ac-
curacy of land cover and land use maps.

Signature analyses of reflectance values of land 
cover types: To determine and understand the spec-

tral separability of the Landsat reflectance bands of 
the various land-cover types, to enable the choice and 
order of spectral bands to be used, the Landsat image 
reflectance at known land-cover types against the 
bands were plotted. Furthermore, the reflectance val-
ues against the different wavelengths at various land-
cover types were also plotted.

Image classification: The approach is based on the 
supervised classification of multispectral, multisensor 
data, using the Landsat image collection of Landsat 5, 
7 and 8 combined in one mosaic. Supervised classifica-
tion is a method often used for the quantitative analy-
sis of remote sensing images. It aims at grouping the 
spectral domain into regions that can be associated 
with ground cover classes of interest for a particular 
application (Richards 2013). The Landsat image bands 
were chosen and their arrangements were Near Infra-
red (NIR), Shortwave Infrared 1 (SWIR1), Red, Green 
and the computed Normalized Difference Vegetation 
Index (NDVI) band. The NDVI is an index of plant green-
ness, which is also an indicator of density of plants. It is 
calculated using the formula in Equation 1. 

                                                              (Eq. 1)                     

Fig. 3 Screen shot of a Google Earth image showing the various land-cover classes analyzed in this study



45DIE ERDE · Vol. 147 · 1/2016

The classification scheme employed to create a 
land-cover/land-use map was a modification of 
Omodanisi (2013) to incorporate oil palm and crop-
land and to combine high forest and light forest in a 
single land-cover type (Fig. 3), thus differentiating 
between  i) water bodies, ii) a built-up areas class 
which also includes bare ground, roads and build-
ing facilities, iii) cropland which includes all agri-
cultural land that does not have oil palms planted 
as mixed crop, iv) forests, including primary and 
secondary forests, v) oil palms.  

Classifiers voting support vector machine (SVM): The 
concept of SVM is based on decision plains that de-
fine decision boundaries. The classifier takes inputs 
from training data and makes predictions based on 
given inputs. The classes input is formed by relating 
the training data set to each pixel in an image (Kav-
zoglu and Colkesen 2009). The algorithm was first in-
troduced as a machine learning method by Cortes and 
Vapnik (1995) based on a non-probability binary func-
tion because it predicts for each of a series of given 
inputs the possible input that the input belongs to. 
Originally, the approach was designed to solve binary 
problems. In remote sensing applications, however, 
the problem often involves multiclass/non-binary 
problems.  Various approaches have been proposed to 
address multiclass problems (m-class), e.g. Schölkopf 
and Smola (2002), where the problem is usually split 
into a set of binary classifiers before combining them. 
The one-against-all classification strategy splits the 
problem into multiple binary sub-problems. The one-
versus-one classification strategy creates Equation 2 
binary sub-problems and later combines the follow-
ing adopting a majority voting scheme. The approach 
has shown to be more suitable for large problems like 
ours (cf. Hsu and Lin 2002). Its operation is carried 
out in feature space, where classes are separated by 
a boundary that is as wide as possible. Our choice of 
choosing this algorithm as classifier algorithm was 
based on the finding that it performs well in mapping 
oil palm plantation (Li et al. 2015; Nooni et al. 2014).

                                                                    (Eq. 2)

3.3  Post-processing

Noise filtering (majority filter): In order to reduce 
noise in the classification result, we applied a major-
ity filter algorithm as implemented in SAGA GIS in the 
post-processing, which removes isolated cells. The 

majority filter considered a search radius of 3 x 3 cells 
to improve the homogeneity of the classified raster.

Accuracy assessment: Many factors affect the ac-
curacy of an image classification, this includes pre-
processing of remote sensing data, precision and 
resolution of remote sensing data and training sample 
selection. Accuracy assessment allows the analyst to 
compare certain pixel values in a raster layer to the 
reference pixels for which the class is known (Mani 
Murali et al. 2006), in order to establish the error 
margin of the classified image. This requires a sim-
ple cross-tabulation of the class labels allocated by a 
classification of the remotely sensed data against the 
reference data. The error matrix aids in quantifying 
image classification accuracy and its area estimation. 

The accuracy assessment computation we carried out 
includes: 

  –  Confusion matrix: The confusion matrix is cal-
culated by comparing the location and class of each 
reference pixel with the corresponding location and 
class in the classification image.

  –  Producer accuracy: This is the measure that in-
dicates the probability that the classifier has labeled 
an image pixel into class A given that the reference 
class is A.

  –  User accuracy: This measures the probability that 
a pixel is class A given that the classifier has labeled 
the pixel into class A.

  –  Overall accuracy: This is calculated by summing 
the number of pixels classified correctly,  divided by 
the total number of pixels in that land-cover class. 

  –  Kappa coefficient: The kappa coefficient (k) meas-
ures the agreement between the classification result 
with that of the reference pixels. Perfectly agreed 
means that the kappa coefficient tends to 1 or is very 
close to 1. It is calculated using the formula

                 k                                                          (Eq. 3)

where i is the class number, N is the total number of 
classified pixels that are compared to reference data, 
mi,i  is the number of pixels belonging to the reference 
class i, which have been classified with a class i, Ci is 
the total number of classified pixels belonging to class i, 
Gi is the number of reference pixels belonging to class i. 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria
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Change detection: Change detection is a process of 
identifying differences in the state of an object or pheno-
menon by observing it at different times ( Jensen 1996). 
Change detection analyses can be deducted in many 
ways. In land-use/land-cover change analyses, three 
categories are mostly used: i) algebra-based approach 
image differencing, image regression, image  rationing, 
vegetation index differencing and change vector analy-
sis (Singh 1989); ii) transformation principal  component 
analysis, tassled cap, Gramm-Schmidt and Chi.square 
test (Nielsen and Canty 2008); iii) classification-based 
spectral-temporal combined analysis, post-classifica-
tion comparison, unsupervised change detection, hy-
brid change detection, artificial neutral networks and 

electromagnetic transformation (İlsever and Ünsalan 
2012). We decided to work with post-classification 
comparison because this technique makes use of the-
matic maps (classified images) as input and does image 
differencing on a pixel-wise basis. The main advantage 
of post-classification comparison is that it avoids prob-
lems encountered at the image original pixel level, for 
example shadows and reflections ( Jensen 1996).

4.  Results and discussion

A total of five land-cover types were identified and 
classified in this study. These were water, built-up 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria
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Fig. 5 Landsat reflectance data for the various land-cover types plotted against wavelength
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 areas, cropland, forest and oil palm as shown in 
 Figure 4. Following our approach, we were able to get 
little or no cloud cover in our image composite.

The plot of the reflectance values against the chosen 
Landsat image bands and reflectance values against 
wavelengths of the land-cover types at known points 
in our study area (Figs. 4 and 5) show a very clear 
spectral separability of the land-cover types within 

our chosen image bands. The near-infrared band 
has the highest spectral separability to distinguish 
among the different land-cover types. Thus, the band 
arrangement of the classification follows the order of 
its separability among the land-cover types. 

In the 2005 land-cover map, cropland, oil palm, for-
est, built-up and water body occupy 37.66 %, 27.15 %, 
27.21 %, 4.36 % and 3.59 % respectively (cf. Table 1). 

Land-cover class 
1999-2005 2009-2015 Change 

Area (ha) % Area (ha) % ha % 

Water         384918.52   3.59   415545.38    3.87      30626.86      7.95 

Built-up area    468342.99   4.36      313990.09    2.92        -154352.90  -32.95 

Cropland    4037477.94      37.66     4318065.23 40.28    280587.29  6.94 

Forest      2917374.90 27.21 2824880.57 26.35 -92494.33 -3.17 

Oil palm    2910695.95      27.15   2846329.03     26.55 -64366.92   -2.21 
 

 

Table 1 Land-cover/land-use change in the Nigerian Niger Delta

Fig. 6 Land-use/land-cover map based on the 1999-2005 median composite
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According to the results obtained for the 2015 land-
cover map, cropland occupies 40.28 %, oil palm 
26.55 %, forest 26.35 %, built up area 2.92 %, and wa-
terbodies 3.87 % of the study area (cf. Table 1). It could 
be observed from our maps for both years that the oil 
palm plantation operations are mostly concentrated at 
the western and eastern parts of our study area (Fig. 6 
and Fig. 7). The larger forest extent was observed in 
the eastern part, where the altitude is slightly higher.

The result of the post-classification comparison ap-
proach employed for the detection of land-cover chang-
es is shown in Table 1 and Fig. 8.  It is clearly observed 
that forest had a decrease of 3.17 % from 2005 to 2015, 
which is very significant compared to the time interval. 
Field observations and research findings reveal that the 
high rate of change observed in the forest area has to be 
attributed to the conversion to cropland and to oil palm 
cultivation. Our findings are in line with those of Abbas 
(2012) in his study of a smaller area within our study 
area. Cropland experienced an increase, which has to 
be largely attributed to forest area decrease, reflect-
ing, according to the locals, the governmental policies 
on agriculture (see also Orimoogunje et al. 2013). The 

decrease in built-up area resulted from the conversion 
of bare lands into mostly agricultural land. According 
to our analysis the land-cover type that was most heav-
ily converted to oil palm cultivation and cropland was 
forested areas (cf. Fig. 8). Other land-cover changes 
encountered include: from cropland to forest, built-up 
areas to cropland (which is basically the cropland ar-
eas that were initially cleared for cultivation during 
the first image acquisition period), cropland to built-up 
areas which is due to the increase in urbanization. Our 
study also reveals an increase in water body area. 

The accuracy of the classification results for land-cover 
maps for 2005 and 2015 is reported in Tables 2 and 3 
respectively. The producer accuracy for all the land-
cover types for the 2015 land-cover map ranges from 
74.69 % to 90.00 % and the user accuracy from 72.72 % 
to 97.82 %. Our approach was able to produce an over-
all accuracy of 84.51 % with a Kappa coefficient of 0.80.

Global change and energy transition have triggered a 
lot of land-use/land-cover changes. The RSPO has not 
yet come up with a standard to map and monitor oil 
palm plantations. There is a serious concern that palm 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

Fig. 7 Land-use/land-cover map based on the 2009-2015 median composite
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oil production is largely unsustainable, with issues re-
lating to deforestation, biodiversity, soil degradation, 
water quantity, local people, land rights and many 
other aspects. The development of new plantations 
has resulted in the conversion of large areas of forests 
with a high conservation value and threatens the rich 
biodiversity in these ecosystems. Many of these social, 
ecological and environmental impacts of oil palm pro-
duction can be associated with land-cover and land-
use change in connection with bioenergy production 
(Elbehri et al. 2013). Bioenergy-related land-use deci-
sions may affect local, regional and global social, eco-
logical and environmental systems. Therefore, sustain-
ability is a big challenge with regard to the increased 
development of bioenergy production. It is important 
to develop a standard approach that aids in the deter-
mination of the main resource availability (land).

To investigate the environmental and social impacts 
of unsustainable oil palm cultivation for bioenergy 
production, the land-use/land-cover maps of oil palm 

production are among the data basically needed. To 
this end, our study has come up with an approach to 
get rid of cloudiness challenges in mapping oil palm 
trees in the tropical region at a regional scale using 
Landsat images. This tool is useful when the land cover 
is very heterogeneous, and thus requires a  medium- to 
fine-image resolution. Therefore, our approach could 
serve as a baseline for policy makers, land managers 
in the tropical region to map and monitor land-use/
land-cover change on a local to regional scale.

5.  Conclusions

Oil palm related land use/land cover change can be 
monitored in the tropics at a regional scale by using 
a median composite image, combining Landsat 5, 7 
and 8 data in a single mosaic via GEE and SAGA GIS. 
The approach assists in getting rid of cloud prob-
lems in tropical regions, which also helps in un-
derstanding the nature of change in the use of land 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

Fig. 8 Land-use/land-cover change 2005-2015
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resources. This approach can also facilitate proper 
planning, management and regulations of the use of 
land resources now that there is a quest for energy 
transition due to climate change. The change detec-
tion analysis shows that there is a decrease in the 

forested area in the study area, with a much greater 
forest area that changes to oil palm than other land-
cover types. The overall classification accuracy is 
sufficient in order to establish management strate-
gies based on the map results.

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

 Water Built-up Cropland Forest Oil palm Classification 
overall 

Producer 
accuracy 

(%) 

Water 61 1 0 37 1 100 61.00 

Built-up 4 61 13 3 2 83 73.49 

Cropland 0 8 78 10 8 104 75.00 

Forest 2 1 3 66 21 93 70.96 

Oil palm 0 0 12 17 73 102 71.56 

Truth 
overall 67 71 106 133 105 483  

User 
accuracy 
(%) 

91.04 85.91 73.58 49.62 69.52   

 

Table 2 Confusion matrix for land-use/land-cover map 1999-2005 composite

 Water Built-up Cropland Forest Oil palm Classification 
overall 

Producer 
accuracy 

(%) 

Water 90 2 0 8 0 100 90.00 

Built-up 1 62 17 3 0 83 74.69 

Cropland 0 0 89 8 7 104 85.57 

Forest 1 0 0 80 8 89 89.88 

Oil palm 0 0 8 11 83 102 81.37 

Truth 
overall 92 64 144 110 98 478  

User 
accuracy 
(%) 

97.82 96.87 78.07 72.72 84.69 
  

 

Table 3 Confusion matrix for land-use/land-cover map 2009-2015 composite
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